浏览全部资源
扫码关注微信
1a.中国信息通信科技集团有限公司 光纤通信技术和网络国家重点实验室,武汉 430074
1b.中国信息通信科技集团有限公司 国家信息光电子创新中心,武汉 430074
2.鹏城实验室,广东 深圳 518000
张旭(1986-),男,湖北孝感人。高级工程师,博士,主要研究方向为高速相干光通信数字信号处理。
罗鸣,博士。E-mail:mluo@wri.com.cn
纸质出版日期:2022-10-10,
收稿日期:2022-03-03,
扫 描 看 全 文
张旭, 罗鸣, 杨超, 等. 多波段大容量光传输系统研究[J]. 光通信研究, 2022,(5):1-6.
ZHANG Xu, LUO Ming, YANG Chao, et al. Research of Large Capacity Optical Transmission System based on S/C/L Band[J]. Study on Optical Communications, 2022,(5):1-6.
张旭, 罗鸣, 杨超, 等. 多波段大容量光传输系统研究[J]. 光通信研究, 2022,(5):1-6. DOI: 10.13756/j.gtxyj.2022.05.001.
ZHANG Xu, LUO Ming, YANG Chao, et al. Research of Large Capacity Optical Transmission System based on S/C/L Band[J]. Study on Optical Communications, 2022,(5):1-6. DOI: 10.13756/j.gtxyj.2022.05.001.
基于多波段的光传输系统被认为是有效提升光通信传输容量的方法之一,在C和L波段的基础上,利用其他波段进行传输可以充分挖掘现有光纤网络的传输潜力,解决大容量通信网络的瓶颈问题,其关键技术及系统的实现有利于推动相关技术的产业化进程,具有广阔的经济效益。文章对当前全波段光传输技术的研究现状进行了分析和探讨,重点对S、C和L波段的性能差异进行了实验分析研究,采用C和L波段常规器件,使用偏振复用16进制正交幅度调制(PDM-16QAM)格式完成了波长范围覆盖S、C和L,容量可达到122.4 Tbit/s的40 km光传输系统实验。验证了G.652.D光纤的多波段传输能力,为进一步研究多波段光传输技术提供了实验基础。
The optical transmission system based on all-band is considered to be one of the methods to effectively improve the transmission capacity of optical communication. In addition of the C and L bands
the using of other bands for transmission can fully tap the transmission potential of the existing optical fiber network and solve the bottleneck problem of large capacity communication network. The realization of its key technologies and systems is conducive to promoting the industrialization process of related technologies
which has broad economic benefits. This paper analyzes and discusses the current research status of multi-band optical transmission technology. And then as the focus
the performance difference of S、C and L band is studied by experiments. Based on the devices designed for C and L bands
the experiment of 40 km transmission system covering on S、C and L band is completed by using Polarization Division Multiplexed 16 Quadrature Amplitude Modulation (PDM-16QAM) modulation format
and the transmission capacity can reach 122.4 Tbit/s. The multi-band transmission capability of G. 652.D optical fiber is verified
which provicles an experimental basis for further research on multi-band optical transmission technology.
全波段单模光纤光纤通信
all-bandsingle mode fiberoptical fiber communication
ITU-T. Optical Fibres, Cables and Systems[EB/OL]. (2009-11-28)[2022-03-03]. https://www.itu.int/dms_pub/itu-t/opb/hdb/T-HDB-OUT.10-2009-1-PDF-E.pdfhttps://www.itu.int/dms_pub/itu-t/opb/hdb/T-HDB-OUT.10-2009-1-PDF-E.pdf.
Ferrari A, Napoli A, Fischer J K, et al. Assessment on the Achievable Throughput of Multi-band ITU-T G. 652. D Fiber Transmission Systems[J]. Journal of Lightwave Technology, 2020, PP (99): 1.
Kani J, Hattori K, Jinno M, et al. Trinal-wavelength-band WDM Transmission over Dispersion-shifted Fiber[C]//Optical Fiber Communication Conference 1999. San Diego, USA: OSA, 1999: WJ2-1.
Fukuchi K, Kasamatsu T, Morie M, et al. 10.92-Tb/s (273×40-Gb/s) Triple-band/Ultra-dense WDM Optical-repeatered Transmission Experiment[C]//Optical Fiber Communication Conference 2001. Anaheim, USA: OSA, 2001: PD24-1.
Freund R, Molle L, Raub F, et al. Triple-(S/C/L)-band WDM Transmission Using Erbium-Doped Fibre Amplifiers[C]//European Conference on Optical Communication 2005. Glasgow, UK: IEEE, 2005: Mo4.2.3.
Qian D, Huang M, Ip E, et al. 101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM Transmission over 3×55 km SSMF Using Pilot-based Phase Noise Mitigation[C]//Optical Fiber Communication Conference 2011. Los Angeles, USA: OSA, 2011: PDPB5.
Sano A, Kobayashi T, Yamanaka S, et al. 102.3-Tb/s (224×548-Gb/s) C-and Extended L-band All-Raman Transmission over 240 km Using PDM-64QAM Single Carrier FDM with Digital Pilot Tone[C]//Optical Fiber Communication Conference 2012. Los Angeles, USA: OSA, 2012: PDP5C.3.
Cai J, Sun Y, Zhang H, et al. 49. 3 Tb/s Transmission over 9 100 km Using C+L EDFA and 54 Tb/s Transmission over 9 150 km Using Hybrid-Raman EDFA[J]. Journal of Lightwave Technology, 2015, 33(13): 2724-2734.
Renaudier J, Carbo Meseguer A, Ghazisaeidi A, et al. First 100 nm Continuous-band WDM Transmission System with 115 Tb/s Transport over 100 km Using Novel Ultra-Wideband Semiconductor Optical Amplifiers[C]//European Conference on Optical Communication 2017. Gothenburg, Sweden: IEEE, 2017: Th.PDP.A.3.
Hamaoka F, Minoguchi K, Sasai T, et al. 150.3-Tb/s Ultra-wideband (S, C, and L bands) Single-Mode Fibre Transmission over 40 km Using >519 Gb/s/λ PDM-128QAM Signals[C]//European Conference on Optical Communication 2018. Rome, Italy: IEEE, 2018: Mo4G.1.
Renaudier J, Arnould A, Gac D L, et al. 107 Tb/s Transmission of 103-nm Bandwidth over 3×100 km SSMF Using Ultra-Wideband Hybrid Raman/SOA Repeaters[C]//Optical Fiber Communication Conference 2019. San Diego, USA: OSA, 2019: Tu3F.2.
Okamoto S, Minoguchi K, Hamaoka F, et al. A Study on the Effect of Ultra-wide Band WDM on Optical Transmission Systems[J]. Journal of Lightwave Technology, 2020, 38(5): 1061-1070.
Galdino L, Edwards A, Yi W, et al. Optical Fibre Capacity Optimisation via Continuous Bandwidth Amplification and Geometric Shaping[J]. IEEE Photonics Technology Letters, 2020, PP (99): 1.
Benjamin J, Ruben S, Georg L, et al. S, C and Extended L-Band Transmission with Doped Fiber and Distributed Raman Amplification[C]//Optical Fiber Communication Conference 2021. San Francisco, USA: OSA, 2021: Th4C.2.
0
浏览量
91
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构