浏览全部资源
扫码关注微信
中国科学院微电子研究所 集成电路先导工艺研发中心,北京 100029
欧祥鹏(1996-),男,广西北海人。博士,主要研究方向为硅基光电子学。
杨妍,研究员。E-mail:yyang10@ime.ac.cn
纸质出版日期:2023-02-10,
收稿日期:2022-10-21,
扫 描 看 全 文
欧祥鹏,杨在利,唐波,等. 2.5D/3D硅基光电子集成技术及应用[J].光通信研究,2023(1):1-16
OU X P, YANG Z L, TANG B, et al. Silicon Photonic 2.5D/3D Integration Technology and Its Applications[J]. Study on Optical Communications, 2023(1):1-16
欧祥鹏,杨在利,唐波,等. 2.5D/3D硅基光电子集成技术及应用[J].光通信研究,2023(1):1-16 DOI: 10.13756/j.gtxyj.2023.01.001.
OU X P, YANG Z L, TANG B, et al. Silicon Photonic 2.5D/3D Integration Technology and Its Applications[J]. Study on Optical Communications, 2023(1):1-16 DOI: 10.13756/j.gtxyj.2023.01.001.
全球网络流量急速增长,数据传输所需带宽和能源消耗也随之快速增加,传统电子信息互联架构已无法满足日益增长的带宽和节约能耗的需求。硅基光电子技术具有带宽高、能耗低并且可以利用成熟的互补金属氧化物半导体(CMOS)技术将光子集成电路和电子集成电路大规模集成在硅衬底上等优势,能满足下一代数据传输系统的迫切需求。2.5D/3D硅基光电子集成技术可以有效缩短光芯片和电芯片之间电学互连长度、减小芯片尺寸,从而减小寄生效应、提高集成密度和降低功耗。文章介绍了硅基光电子集成技术的不同方案和最新进展,并展望了硅基光电子芯片结合2.5D/3D集成技术在数据通信、激光雷达、生化传感以及光计算等领域的应用前景。
With the explosive growth of global network traffic and the consequent increase in bandwidth and energy consumption required for data transmission
traditional electronic interconnection architectures are no longer able to meet the requirement of the growing bandwidth and energy conservation. Silicon-based photonics featured as high bandwidth
low energy consumption
and more importantly
compatibility with Complementary Metal-Oxide-Semiconductor (CMOS) technologies enables the large-scale Photonic Integrated Circuits (PIC) and Electronic Integrated Circuits (EIC) to be integrated in a single substrate
hence it is regarded as one of the most promising solutions to address these challenges. However
with the increasing frequency of signals and the increasing number of integrated photonics and electronic devices
parasitic effects are becoming more prominent
leading to a significant degradation in the integration density
bandwidth density
and energy efficiency of the chip. 2.5D/3D integration technologies can effectively reduce the electrical interconnect length and chip size
thus reducing parasitic effects and power consumption
as well as increasing integration density. This paper presents different schemes of silicon based optoelectronic integration and its recent advances
and looks forward to the application prospects of 2.5D/3D integration technologies in data communication
Light Detection and Ranging (LiDAR)
biochemical sensing
and optical computing
et al.
光通信硅光光电集成2.5D/3D集成硅通孔转接板
optical communicationsilicon photonicselectronic-photonic integration2.5D/3D integrationthrough-silicon-viainterposer
Cisco Annual Internet Report (2018-2023) White Paper[R]. US: Cisco, 2020.
Andrae A S G, Edler T. On Global Electricity Usage of Communication Technology: Trends to 2030[J]. Challenges, 2015, 6(1): 117-157.
Young I A, Mohammed E, Liao J T S, et al. Optical I/O Technology for Tera-scale Computing[J]. IEEE Journal of Solid-state Circuits, 2010, 45(1): 235-248.
王兴军, 苏昭棠, 周治平. 硅基光电子学的最新进展[J]. 中国科学:物理学 力学 天文学, 2015(1): 1-31.
Wang X J, Su Z T, Zhou Z P. Silicon-based Optoelectronics: Progress towards Large Scale Optoelectronic Integration and Applications[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2022, 15(1): 1-31.
Kimerling L C, Ahn D, Apsel A B, et al. Electronic-photonic Integrated Circuits on the CMOS Platform [C]//Conference on Silicon Photonics. CA, US: Massachusetts Institute of Technology, 2006: 20060125-20060126.
Nagarajan R, Joyner C H, Schneider R P, et al. Large-scale Photonic Integrated Circuits[J]. IEEE Journal of Selected Topics in Quantum Electron, 2005, 11(1): 50-65.
Koch T L, Koren U. Semiconductor Photonic Integrated Circuits[J]. IEEE J Quantum Electron, 1991, 27(3): 641-653.
Yang Y, Fang Q, Yu M, et al. High-efficiency Si Optical Modulator Using Cu Travelling-wave Electrode[J]. Optics Express, 2014, 22(24): 29978-29985.
Liang D, Bowers J E. Recent Progress in Lasers on Silicon[J]. Nature Photonics, 2010, 4(8): 511-517.
Liang D, Bowers J E. Recent Progress in Heterogeneous III-V-on-Silicon Photonic Integration[J]. Light: Advanced Manufacturing, 2021, 2(1): 59-83.
Xiang C, Jin W, Huang D, et al. High-Performance Silicon Photonics Using Heterogeneous Integration[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28(3): 1-15.
Zhou Z, Yin B, Michel J. On-chip Light Sources for Silicon Photonics[J]. Light: Science & Applications, 2015, 4(11): e358.
Baets R, Subramanian A Z, Clemmen S, et al. Silicon Photonics: Silicon Nitride Versus Silicon-on-insulator[C]//Optical Fiber Communications Conference 2016. CA, US: Optica Publishing Group, 2016: Th3J.1.
Roeloffzen C G H, Hoekman M, Klein E J, et al. Low-Loss Si3N4 TriPleX Optical Waveguides: Technology and Applications Overview[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(4): 1-21.
Morichetti F, Melloni A, Martinelli M, et al. Box-Shaped Dielectric Waveguides: A New Concept in Integrated Optics?[J]. Journal of Lightwave Technology, 2007, 25(9): 2579-2589.
Han C, Jin M, Tao Y, et al. Ultra-compact Silicon Modulator with 110 GHz Bandwidth[C]//Optical Fiber Communications Conference 2022. San Diego, CA, US: OSA, 2022: Th4C.5.
Lischke S, Peczek A, Morgan J S, et al. Ultra-fast Germanium Photodiode with 3-dB Bandwidth of 265 GHz[J]. Nature Photonics, 2021, 15(12): 925-931.
Fang A W, Park H, Cohen O, et al. Electrically Pumped Hybrid AlGaInAs-silicon Evanescent Laser[J]. Optics Express, 2006, 14(20): 9203-9210.
Jones R, Doussiere P, Driscoll J B, et al. Heterogeneously Integrated InP\‘Silicon Photonics: Fabricating Fully Functional Transceivers[J]. IEEE Nanotechnology Magazine, 2019, 13(2): 17-26.
Chang F, Sun Y, Lingle R, et al. First Demonstration of PAM4 Transmissions for Record Reach and High-capacity SWDM Links over MMF Using 40G/100G PAM4 IC Chipset with Real-time DSP[C]//Optical Fiber Communications Conference 2017. Los Angeles, USA: OSA, 2017: Tu2B.2.
NOEIC. 国内首款1.6 Tbit/s硅光互连芯片在NOEIC完成研制[EB/OL]. (2021-12-24)[2022-10-21]. http://www.noeic.com/show-14-272.htmlhttp://www.noeic.com/show-14-272.html.
NOEIC. The First 1.6 Tbit/s Silicon Photonic Interconnect Chip was Developed in NOEIC[EB/OL]. (2021-12-24)[2022-10-21]. http://www.noeic.com/show-14-272.htmlhttp://www.noeic.com/show-14-272.html.
Margalit N, Xiang C, Bowers S M, et al. Perspective on the Future of Silicon Photonics and Electronics[J]. Applied Physics Letters, 2021, 118(22): 220501.
Won R, Paniccia M. Integrating Silicon Photonics[J]. Nature Photonics, 2010, 4(8): 498-499.
Hsu C P, Li B, Solano-Rivas B, et al. A Review and Perspective on Optical Phased Array for Automotive LiDAR[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27(1): 1-16.
Xie W, Komljenovic T, Huang J, et al. Heterogeneous Silicon Photonics Sensing for Autonomous Cars[J]. Optics Express, 2019, 27(3): 3642-3663.
Tombez L, Zhang E J, Orcutt J S, et al. Methane Absorption Spectroscopy on a Silicon Photonic Chip[J]. Optics, 2017, 4(11): 1322-1325.
Zhou H L, Dong J J, Cheng J W, et al. Photonic Matrix Multiplication Lights up Photonic Accelerator and beyond[J]. Light: Advanced Manufacturing, 2022, 11(2): 158-178.
Hughes T W, Minkov M, Shi Y, et al. Training of Photonic Neural Networks Through in Situ Backpropagation and Gradient Measurement[J]. Optica, 2018, 5(7): 864.
Xiao X, On M B, Van Vaerenbergh T, et al. Large-scale and Energy-efficient Tensorized Optical Neural Networks on III-V-on-silicon MOSCAP Platform[J]. APL Photonics, 2021, 6(12): 126107.
Chen Z G, Segev M. Highlighting Photonics: Looking into the Next Decade[J]. eLight, 2021, 1(1): 2.
Helkey R, Saleh A A M, Buckwalter J, et al. High-Performance Photonic Integrated Circuits on Silicon[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(5): 1-15.
Norman J C, Jung D, Wan Y, et al. Perspective: The Future of Quantum Dot Photonic Integrated Circuits[J]. Apl Photonics, 2018, 3(3): 030901.
Shang C, Wan Y, Selvidge J, et al. Perspectives on Advances in Quantum Dot Lasers and Integration with Si Photonic Integrated Circuits[J]. ACS Photonics, 2021, 8(9): 2555-2566.
Thomson D, Zilkie A, Bowers J E, et al. Roadmap on Silicon Photonics[J]. Journal of Optics, 2016, 18(7): 073003.
Atabaki A H, Moazeni S, Pavanello F, et al. Integrating Photonics with Silicon Nanoelectronics for the Next Generation of Systems on a Chip[J]. Nature, 2018, 556(7701): 349-354.
Sousa I D, Achard L. The Future of Packaging with Silicon Photonics[EB/OL]. (2016-02-01)[2022-10-21]. https://www.ibm.com/downloads/cas/M0NL8N85https://www.ibm.com/downloads/cas/M0NL8N85.
Yang Y, Yu M B, Fang Q, et al. 3D Silicon Photonics Packaging based on TSV Interposer for High Density On-board Optics Module[C]//2016 IEEE 66th Electronic Components and Technology Conference (ECTC). Las Vegas, USA: IEEE, 2016: 483-489.
Kim D W, Au K Y, Luo H Y L X, et al. 2.5 D Silicon Optical Interposer for 400 Gbps Electronic-photonic Integrated Circuit Platform Packaging[C]//2017 IEEE 19th Electronics Packaging Technology Conference (EPTC). Singapore: IEEE, 2017: 1-4.
Yu M B, Yang Y, Fang Q, et al. 3D Electro-optical Integration based on High-performance Si Photonics TSV Interposer[C]//Optical Fiber Communications Conference 2016. CA, USA: Optica Publishing Group, 2016: 1-3.
Urino Y, Shimizu T, Okano M, et al. First Demonstration of High Density Optical Interconnects Integrated with Lasers, Optical Modulators, and Photodetectors on Single Silicon Substrate[J]. Optics Express, 2011, 19(26): B159-B165.
Williams K A. Prospects for Electronic Photonic Integration[C]//Integrated Photonics Research, Silicon and Nanophotonics 2017. New Orleans, US: OSA, 2017: IW3A.1.
Abrams N C, Cheng Q, Glick M, et al. Silicon Photonic 2. 5 D Multi-chip Module Transceiver for High-performance Data Centers[J]. Journal of Lightwave Technology, 2020, 38(13): 3346-3357.
Liu A, Liao L, Chetrit Y, et al. Wavelength Division Multiplexing based Photonic Integrated Circuits on Silicon-on-insulator Platform[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 16(1): 23-32.
Li H, Xuan Z, Titriku A, et al. A 25 Gb/s, 4. 4 V-swing, AC-coupled Ring Modulator-based WDM Transmitter with Wavelength Stabilization in 65 nm CMOS[J]. IEEE Journal of Solid-state Circuits, 2015, 50(12): 3145-3159.
Li H, Balamurugan G, Sakib M, et al. A 112 Gb/s PAM4 Transmitter with Silicon Photonics Microring Modulator and CMOS Driver[C]//Optical Fiber Communications Conference 2019. San Diego, USA: IEEE, 2019: Th4A.4.
Sun J, Kumar R, Sakib M, et al. A 128 Gb/s PAM4 Silicon Microring Modulator with Integrated Thermo-Optic Resonance Tuning[J]. Journal of Lightwave Technology, 2019, 37(1): 110-115.
Li H, Balamurugan G, Sakib M, et al. A 112 Gb/s PAM4 Silicon Photonics Transmitter with Microring Modulator and CMOS Driver[J]. Journal of Lightwave Technology, 2020, 38(1): 131-138.
Ahmed A H, Sharkia A, Casper B, et al. Silicon-photonics Microring Links for Datacenters-challenges and Opportunities[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(6): 94-203.
Sakib M, Kumar R, Ma C, et al. A 240 Gb/s PAM4 Silicon Micro-ring Optical Modulator[C]//Optical Fiber Communications Conference 2022. San Diego, CA, US: OSA, 2022: 01-03.
周治平, 杨丰赫, 陈睿轩, 等. 硅基光电子:微电子与光电子的交融点[J]. 微纳电子与智能制造, 2019(3): 12.
Zhou Z P, Yang F H, Chen R X, et al. Silicon Photonics-a Converging Point of Microelectronics and Optoelectronics[J]. Micro/nano Electronics and Intelligent Manufacturing, 2019(3): 12.
NOEIC. 100G硅光收发芯片正式投产使用[EB/OL]. (2018-08-30)[2022-10-21]. http://www.noeic.com/show-14-35.htmlhttp://www.noeic.com/show-14-35.html.
NOEIC. 100G Silicon Photonic Transceiver Chips are formally Producted and Operated[EB/OL]. (2018-08-30)[2022-10-21]. http://www.noeic.com/show-14-35.htmlhttp://www.noeic.com/show-14-35.html.
Novack A, Streshinsky M, Huynh T, et al. A Silicon Photonic Transceiver and Hybrid Tunable Laser for 64 Gbaud Coherent Communication[C]//Optical Fiber Communication Conference 2018. San Diego, USA: IEEE, 2018: Th4D.4.
Chou B C, Sato Y, Sukumaran V, et al. Modeling, Design, and Fabrication of Ultra-high Bandwidth 3D Glass Photonics (3DGP) in Glass Interposers[C]//IEEE 63rd Electronic Components and Technology Conference. Las Vegas, USA: IEEE, 2013: 286-291.
Thor L S, Yu L H, Chinq J M, et al. Silicon Optical Interposer for EPIC 2. 5D Integration[C]//Asia Communications and Photonics Conference/International Conference on Information Photonics and Optical Communications 2020 (ACP/IPOC). Beijing, China: IEEE, 2020: T3G.1.
Abrams N C, Cheng Q, Glick M, et al. Silicon Photonic 2. 5D Integrated Multi-Chip Module Receiver[C]//Conference on Lasers and Electro-Optics (CLEO) 2020. San Jose, CA, USA: IEEE, 2020: 1-2.
Johnson J E, Bacher K, Schaevitz R, et al. Performance and Reliability of Advanced CW Lasers for Silicon Photonics Applications[C]//Optical Fiber Communications Conference 2022. San Diego, CA, US: OSA, 2022: 1-27.
Snyder B, Mangal N, Lepage G, et al. Packaging and Assembly Challenges for 50 G Silicon Photonics Interposers[C]//Optical Fiber Communication Conference 2018. San Diego, USA: IEEE, 2018: 1-3.
Yang Y, Yu M, Rusli , et al. Through-Si-via (TSV) Keep-Out-Zone (KOZ) in SOI Photonics Interposer: A Study of the Impact of TSV-Induced Stress on Si Ring Resonators[J]. IEEE Photonics Journal, 2013, 5(6): 2700611.
Denoyer G, Chen A, Park B, et al. Hybrid Silicon Photonic Circuits and Transceiver for 56 Gb/s NRZ 2. 2 km Transmission over Single Mode Fiber[C]//The European Conference on Optical Communication (ECOC) 2014. Cannes, France: IEEE, 2014: 1-3.
Aoki T, Sekiguchi S, Simoyama T, et al. Low-crosstalk Simultaneous 16-channel×25 Gb/s Operation of High-density Silicon Photonics Optical Transceiver[J]. Journal of Lightwave Technology, 2018, 36(5): 1262-1267.
Daudlin S, Rizzo A, Abrams N C, et al. 3D-integrated Multichip Module Transceiver for Terabit-scale Dwdm Interconnects[C]//Optical Fiber Communication Conference 2021. San Francisco, CA, USA: IEEE, 2021: Th4A.4.
Rizzo A, Dai L Y, Meng X, et al. Ultra-low Power Consumption Silicon Photonic Link Design Analysis in the AIM PDK[C]//In Optical Interconnects XIX 2019. San Francisco, CA; USA: SPIE, 2019: 31-36.
Malik A, Liu S, Timurdogan E, et al. Low Power Consumption Silicon Photonics Datacenter Interconnects Enabled by a Parallel Architecture[C]//Optical Fiber Communication Conference 2021. San Francisco, CA, USA: IEEE, 2021: W6A.3.
Dumont M, Liu S, Kennedy M, et al. High-efficiency Quantum Dot Lasers as Comb Sources for DWDM Applications[J]. Applied Sciences, 2022, 12(4): 1836.
Yang Y. Development of 3D Electro-optical Integration based on Silicon Photonic TSV Interposer[D]. Singapore: Nanyang Technological University, 2016.
Yang Y, Rusli , Yu M. RF Modeling of the 3D Electro-Photonic Integration based on SOI Photonic TSV Interposer[C]//IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) 2019. Xi’an, China: IEEE, 2019: 1-2.
Kim D W, Yu L H, Chang K F, et al. 3D System-on-Packaging Using Through Silicon Via on SOI for High-Speed Optcal Interconnections with Silicon Photonics Devices for Application of 400 Gbps and Beyond[C]//IEEE 68th Electronic Components and Technology Conference (ECTC) 2018. San Diego, CA, USA: IEEE, 2018: 834-840.
Miyaguchi K, Ban Y, Pantano N, et al. 110 GHz Through-Silicon Via’s Integrated in Silicon Photonics Interposers for Next-Generation Optical Modules[C]//European Conference on Optical Communication (ECOC)2021. Bordeaux, France: IEEE, 2021: 1-4.
Orcutt J S, Gill D M, Proesel J, et al. Monolithic Silicon Photonics at 25 Gb/s[C]//Optical Fiber Communications Conference 2016. CA, US: Optica Publishing Group, 2016: 1-3.
Stojanovic V, Ram R J, Popovic M, et al. Monolithic Silicon-photonic Platforms in State-of-the-art CMOS SOI processes[J]. Optics Express, 2018, 26(10): 13106-13121.
Gill D M, Xiong C, Proesel J E, et al. Demonstration of Error Free Operation up to 32 Gbit/s From a CMOS Integrated Monolithic Nano-Photonic Transmitter[C]//Conference on Lasers and Electro-Optics (CLEO)2015. San Jose, CA, USA: IEEE, 2015: STu4F.3.
Gunn C. CMOS Photonics for High-speed Interconnects[J]. IEEE Micro, 2006, 26(2): 58-66.
Sun C, Wade M T, Lee Y, et al. Single-chip Microprocessor that Communicates Directly Using Light[J]. Nature, 2015, 528(7583): 534-538.
Eppenberger M, Bonomi M, Moor D, et al. Compact Optical TX and RX Macros for Computercom Monolithically Integrated in 45 nm CMOS[J]. Journal of Lightwave Technology, 2021, 39(21): 6869-6879.
Doerr C, Heanue J, Chen L, et al. Silicon Photonics Coherent Transceiver in a Ball-grid Array Package[C]//Optical Fiber Communications Conference 2017. Los Angeles, USA: OSA, 2017: 1-3.
Muth K, Raghuraman V, Raghunathan V. Paradigm Shift in High-speed Interface Technology[J]. SPIE, 2022.
Moss B R, Sun C, Georgas M, et al. A 1. 23 pJ/b 2. 5 Gbit/s Monolithically Integrated Optical Carrier-injection Ring Modulator and All-digital Driver Circuit in Commercial 45 nm SOI[C]//IEEE International Solid-State Circuits Conference Digest of Technical Papers 2013. San Francisco, CA, USA: IEEE, 2013: 126-127.
Feilchenfeld N B, Anderson F G, Barwicz T, et al. An Integrated Silicon Photonics Technology for O-band Datacom[C]//IEEE International Electron Devices Meeting (IEDM) 2015. Washington, DC, USA: IEEE, 2015: 25.7.1-25.7.4.
Thomson D, Zilkie A, Bowers J E, et al. Roadmap on Silicon Photonics[J]. Journal of Optics, 2016, 18(7): 1-20.
Siew S Y, Li B, Gao F, et al. Review of Silicon Photonics Technology and Platform Development[J]. Journal of Lightwave Technology, 2021, 39(13): 4374-4389.
Mekis A, Pinguet T, Masini G, et al. Advanced Silicon Photonics Transceivers[J]. Silicon Photonics Iii: Systems and Applications, Pavesi, 2016, 122: 349-374.
McKinzie K A, Wang C, Noman A A, et al. InP High Power Monolithically Integrated Widely Tunable Laser and SOA Array for Hybrid Integration[J]. Optics Express, 2021, 29 (3): 3490-3502.
Wang Q, Wang S, Jia L, et al. Silicon Nitride Assisted 1×64 Optical Phased Array based on a SOI Platform[J]. Optics Express, 2021, 29(7): 10509-10517.
Kim T, Ngai T, Timalsina Y, et al. A Single-Chip Optical Phased Array in a Wafer-Scale Silicon Photonics/CMOS 3D-Integration Platform[J]. IEEE Journal of Solid-State Circuits, 2019, 54(11): 3061-3074.
Sun X C, Zhang L X, Zhang Q H, et al. Si Photonics for Practical LiDAR Solutions[J]. Applied Sciences-Basek, 2019, 9(20).
Martin A, Verheyen P, De Heyn P, et al. Photonic Integrated Circuit-based FMCW Coherent LiDAR[J]. Journal of Lightwave Technology, 2018, 36(19): 4640-4645.
Doylend J K, Gupta S. An Overview of Silicon Photonics for LIDAR[C]//SPIE OPTO 2020. San Francisco, CA, US: SPIE, 2020: 112850J.
Van Acoleyen K, Bogaerts W, Jagerska J, et al. Off-chip Beam Steering with a One-dimensional Optical Phased Array on Silicon-on-insulator[J]. Optics Letters, 2009, 34(9): 1477-1479.
Sun J, Timurdogan E, Yaacobi A, et al. Large-scale Nanophotonic Phased Array[J]. Nature, 2013, 493(7431): 195-199.
Bhargava P, Kim T, Poulto C V, et al. Fully Integrated Coherent LiDAR in 3D-Integrated Silicon Photonics/65 nm CMOS[C]//Symposium on VLSI Circuits 2019. Kyoto, Japan: IEEE, 2019: C262-C263.
Poulton C V, Byrd M J, Russo P, et al. Long-Range LiDAR and Free-Space Data Communication with High-Performance Optical Phased Arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(5): 1-8.
Intel. Mobileye Innovation Will Bring AVs to Everyone, Everywhere[EB/OL]. (2021-01-11)[2022-10-21]. https://www.intel.com/content/www/us/en/newsroom/news/ces-2021-mobileye-avs-on-move.html#gs.h4zpy8https://www.intel.com/content/www/us/en/newsroom/news/ces-2021-mobileye-avs-on-move.html#gs.h4zpy8.
Dong P, Chen Y K, Duan G H, et al. Silicon Photonic Devices and Integrated Circuits[J]. Nanophotonics, Aug, 2014, 3(4-5): 215-228.
Bieren K V. Lens Design for Optical Fourier Transform Systems[J]. Applied Optics, 1971, 10(12): 2739-2742.
Shen Y, Harris N C, Skirlo S, et al. Deep Learning with Coherent Nanophotonic Circuits[J]. Nature Photonics, 2017, 11(7): 441-446.
Bernstein L, Sludds A, Hamerly R, et al. Freely Scalable and Reconfigurable Optical Hardware for Deep Learning[J]. Scientific Reports, 2021, 11(1): 3144.
Dong P. Silicon Photonic Integrated Circuits for Wavelength-Division Multiplexing Applications[J]. IEEE Journal of Selected Topics in Quantum Electron., 2016, 22(6): 370-378.
Chang L, Liu S, Bowers J E. Integrated Optical Frequency Comb Technologies[J]. Nature Photonics, 2022, 16(2): 95-108.
Reck M, Zeilinger A, Bernstein H J, et al. Experimental Realization of any Discrete Unitary Operator[J]. Physical Review Letters, 1994, 73(1): 58-61.
Tait A N, de Lima T F, Zhou E, et al. Neuromorphic Photonic Networks Using Silicon Photonic Weight Banks[J]. Scientific Reports, 2017, 7(1): 7430.
Feldmann J, Youngblod N, Karpov M, et al. Parallel Convolutional Processing Using and Integrated Photonic Tensor Core[J]. Nature, 2021, 589, 52-58.
Ashtiani F, Geers A J, Aflatouni F. An On-chip Photonic Deep Neural Network for Image Classification[J]. Nature, 2022, 606: 501-506.
Soler M, Calvo-Lozano O, Estevez M C, et al. Nanophotonic Biosensors: Driving Personalized Medicine[J]. Optics and Photonics News, 2020, 31(4): 24-31.
Ruiz-Vega G, Soler M, Lechuga L M. Nanophotonic Biosensors for Point-of-care COVID-19 Diagnostics and Coronavirus Surveillance[J]. Journal of Physics: Photonics, 2021, 3(1): 011002.
Brown L V, Zhao K, King N, et al. Surface-enhanced Infrared Absorption Using Individual Cross Antennas Tailored to Chemical Moieties[J]. Journal of the American Chemical Society, 2013, 135(9): 3688-3695.
Kneipp K, Kneipp H, Itzkan I, et al. Ultrasensitive Chemical Analysis by Raman Spectroscopy[J]. Chemical Reviews, 1999, 99(10): 2957-2976.
Ou X, Tang B, Zhang P, et al. Microring Resonator based on Polarization Multiplexing for Simultaneous Sensing of Refractive Index and Temperature on Silicon Platform[J]. Optics Express, 2022, 30(14): 25627-25637.
Tu X, Song J, Liow T Y, et al. Thermal Independent Silicon-nitride Slot Waveguide Biosensor with High Sensitivity[J]. Optics Express, 2012, 20(3): 2640-2648.
Sun F, Zhou J, Huang L, et al. High Quality Factor and High Sensitivity Photonic Crystal Rectangular Holes Slot Nanobeam Cavity with Parabolic Modulated Lattice Constant for Refractive Index Sensing[J]. Optics Communications, 2017, 399: 56-61.
Wade J H, Alsop A T, Vertin N R, et al. Rapid, Multiplexed Phosphoprotein Profiling Using Silicon Photonic Sensor Arrays[J]. ACS Cent Sci, 2015, 1(7): 374-382.
Mudumba S, de Alba S, Romero R, et al. Photonic Ring Resonance is a Versatile Platform for Performing Multiplex Immunoassays in Real Time[J]. J Immunol Methods, 2017, 448: 34-43.
Zhang E, Martin Y, Orcutt J, et al. Monolithically Integrated Silicon Photonic Chip Sensor for Near-infrared Trace-gas Spectroscopy[M]. Baltimore, US: SPIE, 2019.
Photonics R. Photonics-driven Health Insights that Transform Lives[EB/OL]. (2022-08-01)[2022-10-21]. https://rockleyphotonics.com/biomarker-sensing/https://rockleyphotonics.com/biomarker-sensing/.
Rachim V P, Chung W Y. Wearable-band Type Visible-near Infrared Optical Biosensor for Non-invasive Blood Glucose Monitoring[J]. Sensors and Actuators B: Chemical, 2019, 286: 173-180.
Zilkie A J, Srinivasan P, Trita A, et al. Multi-micron Silicon Photonics Platform for Highly Manufacturable and Versatile Photonic Integrated Circuits[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(5): 1-13.
包觉明, 陈晓炯, 丁运鸿, 等. 硅基光量子芯片上量子调控技术和量子信息应用[J]. 中国科学:物理学 力学 天文学, 2020, 50(8): 47-51.
BAO J M, Chen X J, Ding Y H, et al. Silicon-based Photonic Quantum Information Technologies[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2020, 50(8): 47-51.
Wang J, Sciarrino F, Laing A, et al. Integrated Photonic Quantum Technologies[J]. Nature Photonics, 2020, 14(5): 273-284.
0
浏览量
118
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构