浏览全部资源
扫码关注微信
1.长春理工大学 空间光电技术国家地方联合工程研究中心,长春 130022
2.65547部队,辽宁 鞍山 114200
满仲麒(1998-),男,吉林长春人。博士,主要研究方向为空间激光通信。
王天枢,教授。E-mail:wangts@cust.edu,cn
纸质出版日期:2023-08-10,
收稿日期:2023-04-20,
修回日期:2023-04-24,
扫 描 看 全 文
满仲麒,谭玉彬,刘显著,等.高速水下无线光通信系统研究进展[J].光通信研究,2023(4):1-6.
Man Z Q, Tan Y B, Liu X Z, et al. Research Progress of High speed Underwater Wireless Optical Communication System [J].Study on Optical Communications, 2023(4):1-6.
满仲麒,谭玉彬,刘显著,等.高速水下无线光通信系统研究进展[J].光通信研究,2023(4):1-6. DOI: 10.13756/j.gtxyj.2023.04.001.
Man Z Q, Tan Y B, Liu X Z, et al. Research Progress of High speed Underwater Wireless Optical Communication System [J].Study on Optical Communications, 2023(4):1-6. DOI: 10.13756/j.gtxyj.2023.04.001.
水下无线光通信(UWOC)系统可以实现最高Gbit/s量级的信号传输速率,对于现代水下应用具有重要意义。文章简述了UWOC系统的发展过程,对不同种类的UWOC系统进行了比较,对高速UWOC系统的研究现状进行了综述,从高速UWOC系统的光源、接收机以及信号处理3个部分进行了总结与讨论。希望文章可以为未来高速UWOC系统的研究与发展带来帮助。
High-speed Underwater Optical Wireless Communication (UWOC) can achieve Gbit/s signal transmission rate
which is of great significance for modern underwater applications. This paper first describes the development process of UWOC
and then compares different kinds of UWOC. Finally
we summarize the research status of high speed UWOC system
and discuss three parts of high speed UWOC: light source
receiver and signal processing. It is expected that this paper can bring help to the research and development of high-speed UWOC in the future.
水下无线光通信光接收机数字信号处理调制技术
UWOCoptical receiverdigital signal processingmodulation technique
Zhu S, Chen X, Liu X, et al. Recent Progress in and Perspectives of Underwater Wireless Optical Communication[J]. Progress in Quantum Electronics, 2020, 73:100274.
Partan J, Kurose J, Levine B N. A Survey of Practical Issues in Underwater Networks[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2007, 11(4):23-33.
Lanzagorta M.Underwater Communications[J].Synthesis Lectures on Communications, 2013, 5(2):978-3-031-01678-3.
Gussen C M G, Diniz P S R, Campos M L R, et al. A Survey of Underwater Wireless Communication Technologies[J]. Journal of Communication and Information Systems, 2016, 31(1):242-255.
Saeed N, Celik A, Al-Naffouri T Y, et al. Underwater Optical Wireless Communications, Networking, and Localization:A Survey[C]//Ad Hoc Networks.Queenstown, New Zealand:ADHOCNETS, 2019:101935.
迟楠, 贺锋涛, 段作梁.水下可见光通信关键技术[M].北京: 人民邮电出版社, 2020.
Chi N, He F T, Duan Z L.Key Technology of Underwater Visible Light Communication[M].Beijing:The People's Posts and Telecommunications Press, 2020.
Amer M, Al-Eryani Y. Underwater Optical Communication System Relayed by α-μ Fading Channel: Outage, Capacity and Asymptotic Analysis[DB/OL].(2019-11-11)[2023-04-20]. doi: 10.48550/arXiv.1911.04243http://doi.org/10.48550/arXiv.1911.04243.
Yang Y, He F, Guo Q, et al. Analysis of Underwater Wireless Optical Communication System Performance[J]. Applied Optics, 2019, 58(36):9808-9814.
Hanson F, Radic S. High Bandwidth Underwater Optical Communication[J]. Applied Optics, 2008, 47(2):277-283.
Al-Zhrani S, Bedaiwi N M, El-Ramli I F, et al. Underwater Optical Communications: A Brief Overview and Recent Developments[J]. Engineered Science, 2021, 16:146-186.
Xu J, Song Y, Yu X, et al. Underwater Wireless Transmission of High-speed QAM-OFDM Signals Using a Compact Red-light Laser[J]. Optics Express, 2016, 24(8):8097-8109.
Huang X H, Li C Y, Lu H H, et al. 6-m/10-Gbps Underwater Wireless Red-light Laser Transmission System[J]. Optical Engineering, 2018, 57(6):066110.
Li C Y, Lu H H, Tsai W S, et al. A 5 m/25 Gbps Underwater Wireless Optical Communication System[J]. IEEE Photonics Journal, 2018, 10(3):2842762.
Lu H H, Li C Y, Lin H H, et al. An 8 m/9.6 Gbps Underwater Wireless Optical Communication System[J]. IEEE Photonics Journal, 2016, 8(5):2601778.
Li C Y, Lu H H, Tsai W S, et al. 16 Gb/s PAM4 UWOC System based on 488-nm LD with Light Injection and Optoelectronic Feedback Techniques[J]. Optics Express, 2017, 25(10):11598-11605.
Kong M W, Lv W C, Ali T, et al. 10-m 9.51-Gb/s RGB Laser Diodes-based WDM Underwater Wireless Optical Communication[J]. Optics Express, 2017, 25(17): 20829-20834.
Arvanitakis G N, Bian R, McKendry J J D, et al. Gb/s Underwater Wireless Optical Communications Using Series-connected GaN Micro-LED Arrays[J]. IEEE Photonics Journal, 2020, 12(2):2959656.
Ishibashi S, Susuki K I. 1 Gbps×100 m Underwater Optical Wireless Communication Using Laser Module in Deep Sea[C]//OCEANS 2022. Hampton Roads, VA, USA:IEEE, 2022:9976975.
Zhang C, Wei Z X, Li X Y, et al. 3.8 Gb/s PAM-4 UWOC System over a 2-m Underwater Channel Enabled by a Single-pixel 175-μm GaN-based Mini-LED[J]. IEEE Photonics Journal, 2022, 14(3):3145188.
Li X Y, Cheng C, Zhang C, et al. Net 4 Gb/s Underwater Optical Wireless Communication System over 2 m Using a Single-pixel GaN-based Blue Mini-LED and Linear Equalization[J].Optics Letters, 2022, 47(8): 1976-1979.
Maclure D M, Chen C, McKendry J J D, et al. Hundred-meter Gb/s Deep Ultraviolet Wireless Communications Using AlGaN Micro-LEDs[J]. Optics Express, 2022, 30(26):46811-46821.
Weng Y, Maki T. Observability Analysis of Underwater Wireless Optical Communication Alignment between Auvs[C]//OCEANS 2021.San Diego, CA, USA:IEEE, 2021:9738730.
Ghazy A S, Hranilovic S, Khalighi M A. Angular MIMO for Underwater Wireless Optical Communications: Link Modeling and Tracking[J]. IEEE Journal of Oceanic Engineering, 2021, 46(4):1391-1407.
Li J H, Wang F M, Zhao M M, et al. Large-coverage Underwater Visible Light Communication System based on Blue LED Employing Equal Gain Combining with Integrated PIN Array Reception[J].Applied Optics, 2019, 58(2):383-388.
Nakamura K, Nagaoka K, Matsuo D, et al. Over 1 Gbit/s NRZ-OOK Underwater Wireless Optical Transmission Experiment Using Wideband PMT[C]//2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC). Fukuoka, Japan:IEEE, 2019:8817830.
Zhang L, Tang X, Sun C, et al. Over 10 Attenuation Length Gigabits per Second Underwater Wireless Optical Communication Using a Silicon Photomultiplier (SiPM) based Receiver[J]. Optics Express, 2020, 28(17): 24968-24980.
Sait M, Trichili A, Alkhazragi O, et al. Dual-wavelength Luminescent Fibers Receiver for Wide Field-of-view, Gb/s Underwater Optical Wireless Communication[J]. Optics Express, 2021, 29(23):38014-38026.
Hong X, Du J, Wang Y, et al. Experimental Demonstration of 55-m/2-Gbps Underwater Wireless Optical Communication Using SiPM Diversity Reception and Nonlinear Decision-feedback Equalizer[J]. IEEE Access, 2022, 10:47814-47823.
Pandey P K.MIMO based High-speed Underwater Optical Wireless Communication Using WDM[C]//2022 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS). BHOPAL, India:IEEE, 2022:9741053.
Fei C, Wang Y, Du J, et al. 100-m/3-Gbps Underwater Wireless Optical Transmission Using a Wideband Photomultiplier Tube (PMT)[J]. Optics Express, 2022, 30(2):2326-2337.
Pandey P, Agrawal M. High Speed and Long Range Underwater Optical Wireless Communication[C]//Global Oceans 2020: Singapore–US Gulf Coast. Biloxi, MS, USA:IEEE, 2020:9389197.
Oubei H M, Duran J R, Janjua B, et al. 4.8 Gbit/s 16-QAM-OFDM Transmission based on Compact 450-nm Laser for Underwater Wireless Optical Communication[J]. Optics Express, 2015, 23(18): 23302-23309.
Shen C, Guo Y, Oubei H M, et al. 20-meter Underwater Wireless Optical Communication Link with 1.5 Gbps Data Rate[J]. Optics Express, 2016, 24(22): 25502-25509.
Baghdady J, Miller K, Morgan K, et al. Multi-gigabit/s Underwater Optical Communication Link Using Orbital Angular Momentum Multiplexing[J].Optics Express, 2016, 24(9):9794-9805.
Chen Y, Kong M, Ali T, et al. 26 m/5.5 Gbps Air-water Optical Wireless Communication based on an OFDM-Modulated 520-nm Laser Diode[J].Optics Express, 2017, 25(13):14760-14765.
Fei C, Zhang J, Zhang G, et al. Demonstration of 15-m 7.33-Gb/s 450-nm Underwater Wireless Optical Discrete Multitone Transmission Using Post Nonlinear Equalization[J]. Journal of Lightwave Technology, 2018, 36(3):728-734.
Huang Y F, Tsai C T, Chi Y C, et al. Filtered Multicarrier OFDM Encoding on Blue Laser Diode for 14.8-Gbps Seawater Transmission[J]. Journal of Lightwave Technology, 2017, 36(9):1739-1745.
Chi N, Zhao Y, Shi M, et al. Gaussian Kernel-aided Deep Neural Network Equalizer Utilized in Underwater PAM8 Visible Light Communication System[J]. Optics Express, 2018, 26(20):26700-26712.
Fei C, Hong X, Zhang G, et al. 16.6 Gbps Data Rate for Underwater Wireless Optical Transmission with Single Laser Diode Achieved with Discrete Multi-tone and Post Nonlinear Equalization[J]. Optics Express, 2018, 26(26):34060-34069.
Wang F, Liu Y, Jiang F, et al. High Speed Underwater Visible Light Communication System based on LED Employing Maximum Ratio Combination with Multi-PIN Reception[J]. Optics Communications, 2018, 425:106-112.
Fei C, Hong X, Zhang G, et al. Improving the Performance of Long Reach UOWC with Multiband DFT-Spread DMT[J]. IEEE Photonics Technology Letters, 2019, 31(16):1315-1318.
Hong X, Fei C, Zhang G, et al. Discrete Multitone Transmission for Underwater Optical Wireless Communication System Using Probabilistic Constellation Shaping to Approach Channel Capacity Limit[J]. Optics Letters, 2019, 44(3):558-561.
Lu C H, Wang J M, Li S B, et al. 60 m/2.5 Gbps Underwater Optical Wireless Communication with NRZ-OOK Modulation and Digital Nonlinear Equalization[C]//2019 Conference on Lasers and Electro-Optics (CLEO).San Jose, CA, USA:IEEE, 2019:SM2G.6.
Chen X, Lü W, Zhang Z, et al. 56-m/3.31-Gbps Underwater Wireless Optical Communication Employing Nyquist Single Carrier Frequency Domain Equalization with Noise Prediction[J]. Optics Express, 2020, 28(16): 23784-23795.
Li G, Hu F, Zou P, et al. Advanced Modulation Format of Probabilistic Shaping Bit Loading for 450-nm GaN Laser Diode based Visible Light Communication[J]. Sensors, 2020, 20(21):6143.
Dai Y, Chen X, Yang X, et al. 200-m/500-Mbps Underwater Wireless Optical Communication System Utilizing a Sparse Nonlinear Equalizer with a Variable Step Size Generalized Orthogonal Matching Pursuit[J]. Optics Express, 2021, 29(20):32228-32243.
Chen J H, Geldard C T, Guler E, et al. An Experimental Demonstration of FSK-SIM-PDM Underwater Optical Wireless Communications[C]//2022 Sixth Underwater Communications and Networking Conference (UComms). Lerici, Italy:IEEE, 2022:9905701.
Singh M, Singh M L, Singh R. Performance Enhancement of 112 Gbps UWOC Link by Mitigating the Air Bubbles Induced Turbulence with Coherent Detection MIMO DP-16QAM and Advanced Digital Signal Processing[J]. Optik, 2022, 259:168986.
0
浏览量
53
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构