浏览全部资源
扫码关注微信
北京邮电大学 信息光子学与光通信全国重点实验室,北京 100876
李奕璇,硕士。E-mail:821705570@bupt.edu.cn
纸质出版日期:2024-10-10,
收稿日期:2024-02-10,
修回日期:2024-03-12,
移动端阅览
李奕璇,钱灏泽,张世成,等. 用于光交换的硅基二氧化硅AWGR的设计与研究[J].光通信研究,2024(5):240035.
Li Y X,Qian H Z,Zhang S C,et al. Design and Research of Silicon-based Silica AWGR for Optical Switching[J]. Study on Optical Communications, 2024(5):240035.
李奕璇,钱灏泽,张世成,等. 用于光交换的硅基二氧化硅AWGR的设计与研究[J].光通信研究,2024(5):240035. DOI: 10.13756/j.gtxyj.2024.240035.
Li Y X,Qian H Z,Zhang S C,et al. Design and Research of Silicon-based Silica AWGR for Optical Switching[J]. Study on Optical Communications, 2024(5):240035. DOI: 10.13756/j.gtxyj.2024.240035.
【目的】
2
以
N
×
N
矩阵形式构成的阵列波导光栅路由器(AWGR)具有光学并行和波长路由能力,能在不同信道上同时传输
N
路信号,具有扩展性好、延时低和频带宽等优势,结合可调谐光源能实现快速光交换,是下一代光交换数据中心网络的潜在技术方案之一。为了解决现有AWGR在实际应用中存在的串扰大、有额外耦合损耗、偏振敏感和损耗非均匀性大等问题,进一步扩大数据中心规模和提升数据交换速度,文章分别对4×4和12×12通道的AWGR进行了研究。
【方法】
2
文章通过仿真软件进行基本设计参数的计算,分析研究了AWGR设计流程,并采用光束传播法(BPM)进行了仿真模拟。同时,采用在平板波导和条形波导连接处加入锥形波导taper结构和增大输入、输出波导间距等方法进行了性能优化。
【结果】
2
仿真结果得到良好的性能参数:4×4 AWGR插入损耗为-0.714 dB,串扰为-35.556 dB,损耗非均匀性为1.907 dB;12×12 AWGR插入损耗为-0.294 dB,串扰为-36.019 dB,损耗非均匀性为3.428 dB。文章制作设计器件流片并进行了性能测试,结果表明:4×4 AWGR插入损耗为-2.586 dB,串扰为-29.473 dB,损耗非均匀性为1.921 dB;12×12 AWGR插入损耗为-3.692 dB,串扰为-23.874 dB,损耗非均匀性为3.873 dB。
【结论】
2
文章的研究在串扰和损耗非均匀性等方面进行了性能优化,为后续设计迭代和进一步提升性能参数积累了经验。
【Objective】
2
The Array Waveguide Grating Router (AWGR) constructed in the form of an
N
×
N
matrix has optica
l parallelism and wavelength routing capabilities. It can simultaneously transmit
N
signals on different channels
and has advantages of good scalability
low latency
and wide bandwidth. Combined with tunable harmonic light sources
it can achieve fast optical switching
which is one of the potential technical solutions for the next generation of optical switching data center networks. In order to solve the problems of high crosstalk
additional coupling loss
polarization sensitivity
and non-uniformity of existing AWGR that may affect practical applications
this paper studied AWGR with 4×4 channels and 12×12 channels respectively to further expand the scale of data centers and improve the data exchange speed.
【Methods】
2
The basic design parameters were calculated using simulation software
and the AWGR design process was analyzed and studied. The Beam Propagation Method (BPM) was used for simulation. At the same time
performance optimization is carried out by adding a conical waveguide tap structure at the connection between the flat waveguide and the strip waveguide
increasing the spacing between the input and output waveguides.
【Results】
2
The simulation results show good performance parameters: 4×4 AWGR insertion loss of -0.714 dB
crosstalk of -35.556 dB
loss non-uniformity of 1.907 dB; 12×12 AWGR insertion loss of -0.294 dB
crosstalk of -36.019 dB
loss non-uniformity of 3.428 dB. The designed device chips are then fabricated and tested on the optical platform. The test results indicate: 4×4 AWGR insertion loss of -2.586 dB
crosstalk of -29.473 dB
loss non-uniformity of 1.921 dB; 12×12 AWGR insertion loss of -3.692 dB
crosstalk of -23.874 dB
loss non-uniformity of 3.873 dB.
【Conclusion】
2
This article investigates the performance optimization in areas such as crosstalk and non-uniformity of losses
accumulating experience for subsequent design iterations and further improving the performance parameters.
波分复用光交换阵列波导光栅路由器复用器/解复用器
wavelength division multiplexingoptical exchangeAWGRmultiplexer/demultiplexer
Ballani H, Costa P, Behrendt R, et al. Sirius: A Flat Datacenter Network with Nanosecond Optical Switching[C]//SIGCOMM '20: Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication. Virtual Event, USA: ACM, 2020: 782-797.
Minkenberg C, Krishnaswamy R, Zilkie A, et al. Co-packaged Datacenter Optics: Opportunities and Challenges[J]. IET Optoelectronics, 2021, 15(2): 77-91.
Yao Y, Cheng Z, Dong J, et al. Performance of Integrated Optical Switches based on 2D Materials and beyond[J]. Frontiers of Optoelectronics, 2020, 13(2): 129-138.
van Wijk A C, Doerr C R, Akca I B. Custom Arrayed Waveguide Gratings with Improved Performance[J]. Advanced Photonics Research, 2023, 4(11): 2300198.
熊丽婷, 张绍彪, 揭吁菡. 两种高吞吐量低延迟光数据中心网络架构研究[J]. 光通信研究, 2020(6): 17-20.
Xiong L T, Zhang S B, Jie X H. Research of Two Optical Data Center Network Frameworks with High Throughput and Low Latency[J]. Study on Optical Communications, 2020(6): 17-20.
Cao S Y, Qiu S F, Wei L, et al. An Optical Burst Switching Fabric of Multi-granularity for Petabits/s Multi-chassis Switches and Routers[C]//Optical Fiber Communication Conference 2012. Los Angeles, California, US: OSA Technical Digest, 2012: OW4A.2.
Suzuki K, Seno K, Ikuma Y. Application of Waveguide/Free-space Optics Hybrid to ROADM Device[J]. Journal of Lightwave Technology, 2017, 35(4): 596-606.
Dragone C. An N×N Optical Multiplexer Using a Planar Arrangement of Two Star Couplers[J]. IEEE Photonics Technology Letters, 1991, 3(9): 812-815.
Wang S, Lang T, Wu Y, et al. 16×16 AWG Router based on Silicon Oxynitride Waveguide Platform[C]//CLEO Pacific Rim Conference. Hong Kong, China: OSA Technical Digest, 2018: W4J.5.
Xiao X, Zhang Y, Zhang K, et al. Multi-FSR On-chip Optical Interconnects Using Silicon Nitride AWGR[C]//2019 Conference on Lasers and Electro-Optics (CLEO). San Jose, CA, USA: IEEE, 2019: 8750575.
Fotiadis K, Pitris S, Moralis-Pegios M, et al. Silicon Photonic 16 × 16 Cyclic AWGR for DWDM O-band Interconnects[J]. IEEE Photonics Technology Letters, 2020, 32(19): 1233-1236.
Leijtens X J M, Kuhlow B, Smit M K. Springer Series in Optical Sciences[M]. Berlin: Springer, 2006.
Smit M K, Van Dam C. PHASAR-based WDM-devices: Principles, Design and Applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(2): 236-250.
Huang R, Huang H, Zhao Y, et al. Low-loss Silicon Photonic 16 × 16 Cyclic AWGR based on SOI Platform[J]. IEEE Photonics Journal, 2022, 14(4): 1-7.
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构