浏览全部资源
扫码关注微信
1.光通信技术和网络全国重点实验室,武汉 430074
2.中国信息通信科技集团有限公司,武汉 430074
张新全(1982-),男,湖北枝江人。教授级高工,硕士,主要研究方向为光通信系统、光电子器件、光电集成和量子信息系统。
肖希,教授级高工。E-mail:xiaoxi@noeic.com
收稿日期:2024-03-05,
修回日期:2024-03-25,
纸质出版日期:2025-04-10
移动端阅览
张新全,肖希. 集成电路发展与光电融合探讨[J].光通信研究,2025(2):240056.
Zhang X Q, Xiao X. Discussion on the Development of Integrated Circuits and Photonics-electronics Convergence[J]. Study on Optical Communications, 2025(2): 240056.
张新全,肖希. 集成电路发展与光电融合探讨[J].光通信研究,2025(2):240056. DOI: 10.13756/j.gtxyj.2025.240056.
Zhang X Q, Xiao X. Discussion on the Development of Integrated Circuits and Photonics-electronics Convergence[J]. Study on Optical Communications, 2025(2): 240056. DOI: 10.13756/j.gtxyj.2025.240056.
经过60余年指数级高速发展,集成电路最先进制程工艺节点已来到1 nm。近10年来集成电路的发展在转向,从平面等比例微缩转为三维等效微缩,从性能驱动转为功耗驱动,从单元集成转为系统集成,业界普遍认为已进入到“后摩尔时代”。当前,集成电路面临着3大技术难题,尺寸缩减举步维艰,不仅制程升级放缓,而且代价超百亿美金,格罗方德等部分晶圆厂已放弃进军更先进制程,仅台积电(TSMC)、三星、Intel和Imec等极少数晶圆厂在继续向前推进“深度摩尔”。文章从集成度和能耗两个维度分析了可供深度摩尔继续利用的理论空间,并简要介绍了国际器件与系统路线图(IRDS)关于未来15年的技术演进路线图。“超越CMOS”致力于通过原理、材料和结构等创新找到显著优于传统互补金属氧化物半导体(CMOS)的可能器件和方法,这方面的探索尚属于学术前沿研究阶段。产业界对于系统级封装(SiP)、异质集成和芯粒(Chiplet)等“扩展摩尔(MtM)”技术更为关注。由于信息硬件技术当前遇到的困难和限制是源自电子的物理特性,光子作为与其物理秉性相异的信息载子被寄予厚望,正从传统的传输技术泛化为信息通信技术(ICT)的全尺度连接手段,并逐步进入计算、处理和路由等复杂功能域,光电融合逐渐成为信息技术的重要发展方向。光电融合主要体现于两个维度,一是功能维度协同化,二是硬件维度一体化。文章对这两个维度的进展进行了介绍,并指出以硅为基础的多材料异质集成和混合集成是当前芯片层面光电融合的着眼点,使得光电子发展呈现出“微电子化”的显著特征。光电融合刚起步,在其探索过程中,文章作者认为:一是要重视系统架构层面的适应性改变,不能仅停留于芯片层面;二是融合尚需新材料、新型器件、新工艺、新设备和新系统等多方面创新;三是不能把光电融合狭隘地局限于当前业界着力的MtM方向,还应看到其在Beyond CMOS方向的诸多可能性。
After more than 60 years of exponential rapid development
the most advanced process node of integrated circuits has come to 1 nm. In the past decade
the development of integrated circuits has shifted
from planar proportional scaling to three-dimensional equivalent scaling
from performance-driven to power-consumption-driven
from unit integration to system integration
and the industry generally believes that it has entered the post-Moore era. At present
integrated circuits are facing three major technical challenges
which results in great difficulties in reducing size. Not only is process upgrading slowing down
but the cost exceeds 10 billion dollars. Some wafer fabs such as GLOBALFOUNDRIES have given up advancing to more advanced processes
while only a few such as Taiwan Semiconductor Manufacturing Company (TSMC)
Samsung
Intel
and Imec continue to advance towards More Moore. This article studies the theoretical space for further utilization from the dimensions of integration and energy consumption
and briefly introduces the technology evolution roadmap of International Roadmap for Devices and Systems (IRDS) for the next 15 years. Beyond Complementary Metal Oxide Semiconductor (CMOS) is committed to finding potential devices and methods that are significantly superior to traditional CMOS through innovation in principles
materials
structures
etc.
and this exploration is still in the forefront of academic research. The industry is paying more attention to More than Moore (MtM) technologies such as System-in-Package (SiP)
heterogeneous integration
and chiplets. Due to the current difficulties and limitations faced by information hardware technology stemming from the physical properties of electrons
photons are highly anticipated because of its difference from electrons. Now photonics is being generalized from traditional transmission technology to Information Communications Technology (ICT) full-scale connection technology
and gradually entering complex functional domains such as computing
processing
and routing. Photonics-electronics convergence has gradually become an important development direction of information technology. Photonics-electronics convergence is mainly reflected in two dimensions
functional dimension synergy and hardware dimension integration. This article introduces the progress of these two dimensions
and points out that silicon-based heterogeneous integration and hybrid integration are the current focus of the chip-level photonics-electronics convergence
which makes the development of optoelectronics exhibit the remarkable characteristics of "microelectronization". Photonics-electronics convergence is just beginning
and in its exploration process. The article concludes three points. At first
the attention to adaptive changes should be paid at the system architecture level
not just stay at the chip level. Secondly
the convergence still requires innovation in various aspects such as new materials
new devices
new processes
new equipment
and new systems. Thirdly
photonics-electronics convergence cannot be narrowly limited to the current focus on MtM direction
but also should recognize its many possibilities in the direction of Beyond CMOS.
张新全 , 余少华 . 信息化前景和网络演进探讨 [J ] . 光通信研究 , 2021 ( 2 ): 1 - 6 .
Zhang X Q , Yu S H . Discussion on the Prospect of Informatization and Network Evolution [J ] . Study on Optical Communications , 2021 ( 2 ): 1 - 6 .
Feynman R P . There's Plenty of Room at the Bottom [J ] . Resonance , 2011 ( 16 ): 890 - 905 .
张新全 , 余少华 . 光电融合破解带宽、能耗难题 [J ] . 光通信研究 , 2021 ( 5 ): 1 - 14 .
Zhang X Q , Yu S H . Address the Challenges of Bandwidth and Power Consumption through Photonics-electronics Convergence [J ] . Study on Optical Communications , 2021 ( 5 ): 1 - 14 .
Moore G E . Cramming More Components onto Integrated Circuits [J ] . Proceedings of the IEEE , 1998 , 86 ( 1 ): 82 - 85 .
Ghosh A , Corves B . Introduction to Micromechanisms and Microactuators [M ] . New Delhi, India : Springer , 2015 .
Chen W , Bottoms W R , Salmon T , et al . HIR Overview and Executive Summary [DB/OL ] . ( 2019-09-01 ) [ 2024-03-05 ] . https://eps.ieee.org/images/files/HIR_2021/ch01_overview.pdf https://eps.ieee.org/images/files/HIR_2021/ch01_overview.pdf .
黄如 . 后摩尔时代集成电路技术发展与探讨 [DB/OL ] . ( 2021-06-06 ) [ 2024-03-05 ] . https://www.bilibili.com/video/BV1ey4y137FU/ https://www.bilibili.com/video/BV1ey4y137FU/ .
Huang R . Development and Discussion of Integrated Circuit Technology in the Post-moore Era [DB/OL ] . ( 2021-06-06 ) [ 2024-03-05 ] . https://www.bilibili.com/video/BV1ey4y137FU/ https://www.bilibili.com/video/BV1ey4y137FU/ .
陈堂胜 , 戴家赟 , 吴立枢 , 等 . 晶体管级异质集成技术及其典型应用 [J ] . 固体电子学研究与进展 , 2023 , 43 ( 2 ): 95 - 100 .
Chen T S , Dai J Y , Wu L S , et al . Heterogeneous Integration in Transistors Level and Its Typical Applications [J ] . Research & Progress of SSE , 2023 , 43 ( 2 ): 95 - 100 .
Moore S K . A Better Way to Measure Progress in Semiconductors [EB/OL ] . ( 2020-06-21 ) [ 2024-03-05 ] . https://spectrum.ieee.org/a-better-way-to-measure-progress-in-semiconductors https://spectrum.ieee.org/a-better-way-to-measure-progress-in-semiconductors .
武咏琴 , 卜伟海 , 康劲 , 等 . 3 nm以下技术代FinFET及围栅器件的发展与挑战 [J ] . 微纳电子与智能制造 , 2021 , 3 ( 1 ): 14 - 26 .
Wu Y Q , Bu W H , Kang J , et al . Development and Challenges of FinFET and GAA for Sub-3 nm CMOS Technology Node [J ] . Micro/Nano Electronics and Intelligent Manufacturing , 2021 , 3 ( 1 ): 14 - 26 .
IEEE . International Roadmap for Devices and Systems [EB/OL ] . ( 2022-01-01 ) [ 2024-03-05 ] . https://irds.ieee.org/ https://irds.ieee.org/ .
Weckx P , Ryckaert J , Litta E D , et al . Novel Forksheet Device Architecture as Ultimate Logic Scaling Device towards 2 nm [C ] // 2019 IEEE International Electron Devices Meeting (IEDM) . San Francisco, CA, US : IEEE , 2019 : 8993635 .
Ye S , Liu L , Ma Y , et al . Stacked Lateral Gate-all-around Metal-oxide-semiconductor Field-effect Transistors and Their Three-dimensional Integrated Circuits [J ] . Silicon , 2023 , 15 ( 5 ): 2467 - 2478 .
Yakimets D , Eneman G , Schuddinck P , et al . Vertical GAAFETs for the Ultimate CMOS Scaling [J ] . IEEE Transactions on Electron Devices , 2015 , 62 ( 5 ): 1433 - 1439 .
Lin M S , Huang T C , Tsai C C , et al . A 7 nm 4 GHz Arm®-core-based CoWoS® Chiplet Design for High Performance Computing [C ] // 2019 Symposium on VLSI Circuits . Kyoto, Japan : IEEE , 2019 : 8778161 .
Hu C C , Chen M F , Chiou W C , et al . 3D Multi-chip Integration with System on Integrated Chips (SoIC TM ) [C ] // 2019 Symposium on VLSI Technology . Kyoto, Japan : IEEE , 2019 : 8776486 .
Yoshida J . AMD, TSMC & Imec Show Their Chiplet Playbooks at ISSCC [EB/OL ] . ( 2021-02-26 ) [ 2024-03-05 ] . https://www.eetimes.com/amd-tsmc-imec-show-their-chiplet-playbooks-at-isscc/ https://www.eetimes.com/amd-tsmc-imec-show-their-chiplet-playbooks-at-isscc/ .
Chen W , Bottoms W R , Salmon T , et al . Integrated Photonics [DB/OL ] . ( 2023-09-01 ) [ 2024-03-05 ] . https://eps.ieee.org/images/files/HIR_2023/ch09_photonics.pdf https://eps.ieee.org/images/files/HIR_2023/ch09_photonics.pdf
Naffziger S , Beck N , Burd T , et al . Pioneering Chiplet Technology and Design for the AMD EPYC ™ and Ry zen ™ Processor Families: Industrial Product [C ] // 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA) . Valencia, Spain : IEEE , 2021 : 9499852 .
“中国学科及前沿领域发展战略研究(2021-2035)”项目组 . 中国集成电路与光电芯片2035发展战略 [M ] . 北京 : 科学出版社 , 2023 .
The Project Team of "Research on the Development Strategy of Chinese Disciplines and Frontier Fields (2021-2035)" . China's Integrated Circuit and Optoelectronic Chip 2035 Development Strategy [M ] . Beijing : Science Press , 2023 .
Wong H . On the CMOS Device Downsizing, More Moore, More than Moore, and More-than-Moore for More Moore [C ] // 2021 IEEE 32nd International Conference on Microelectronics (MIEL) . Nis, Serbia : IEEE , 2021 : 9569101 .
Xiong X , Tong A , Wang X , et al . Demonstration of Vertically-stacked CVD Monolayer Channels: MoS2 Nanosheets GAA-FET with Ion>700 μA/μm and MoS2/WSe2 CFET [C ] // 2021 IEEE International Electron Devices Meeting (IEDM) . San Francisco, CA, US : IEEE , 2021 : 9720533 .
ITRS 2.0. The International Technology Roadmap for Semiconductors 2.0 2015 Edition Beyond COMS [DB/OL ] . ( 2015-01-01 ) [ 2024-03-05 ] . https://eps.ieee.org/images/files/Roadmap/ITRSBeyCMOS-2015.pdf https://eps.ieee.org/images/files/Roadmap/ITRSBeyCMOS-2015.pdf .
Ellinger F , Claus M , Schröter M , et al . Review of Advanced and Beyond CMOS FET Technologies for Radio Frequency Circuit Design [C ] // 2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011) . Natal, Brazil : IEEE , 2011 : 6169233 .
余金中 . 半导体光子学 [M ] . 北京 : 科学出版社 , 2015 .
Yu J Z . Semiconductor Photonics [M ] . Beijing, China : Science Press , 2015 .
Wetzstein G , Ozcan A , Gigan S , et al . Inference in Artificial Intelligence with Deep Optics and Photonics [J ] . Nature , 2020 , 588 ( 7836 ): 39 - 47 .
余少华 , 张新全 . 信息光电子专题 [M ] . 北京 : 科学出版社 , 2019 .
Yu S H , Zhang X Q . Information Optoelectronics [M ] . Beijing, China : Science Press , 2019 .
Sakamoto T , Sato N , Segawa T . Photonics-electronics Convergence Technologies for Disaggregated Computing [J ] . NTT Technical Review , 2021 , 19 ( 7 ): 58 - 64 .
Ishizaki T , Yamabe Y . Memory-centric Architecture for Disaggregated Computers [J ] . NTT Technical Review , 2021 , 19 ( 7 ): 65 - 69 .
Alcorn P . Intel Demos 8-Core, 528-Thread PIUMA Chip with 1 TB/s Silicon Photonics [DB/OL ] . ( 2023-08-30 ) [ 2024-03-05 ] . https://www.tom-shardware.com/news/intel-demoes-8-core-528-thread-puma-chip-with-1-tbs-silicon-photonics https://www.tom-shardware.com/news/intel-demoes-8-core-528-thread-puma-chip-with-1-tbs-silicon-photonics .
周治平 , 许鹏飞 , 董晓文 . 硅基光电计算 [J ] . 中国激光 , 2020 , 47 ( 6 ): 9 - 23 .
Zhou Z P , Xu P F , Dong X W . Computing on Silicon Photonic Platform [J ] . Chinese Journal of Lasers , 2020 , 47 ( 6 ): 9 - 23 .
McMahon P L . The Physics of Optical Computing [J ] . Nature Reviews Physics , 2023 , 5 : 717 - 734 .
Hamerly R , Bernstein L , Sludds A , et al . Large-scale Optical Neural Networks based on Photoelectric Multiplication [J ] . Physical Review X , 2019 , 9 ( 2 ): 021032 .
Shen Y , Harris N C , Skirlo S , et al . Deep Learning with Coherent Nanophotonic Circuits [J ] . Nature Photonics , 2017 , 11 : 441 - 446 .
Kitayama K I , Notomi M , Naruse M , et al . Novel Frontier of Photonics for Data Processing-Photonic Accelerator [J ] . APL·Photonics , 2019 , 4 ( 9 ): 090901 .
周涛 , 孙力军 , 顾杰 , 等 . 微波光子信号处理技术 [M ] . 北京 : 国防工业出版社 , 2023 .
Zhou T , Sun L J , Gu J , et al . Microwave Photon Signal Processing Technology [M ] . Beijing, China : National Defense Industry Press , 2023 .
Jia R , Kumar S , Tan T C , et al . Valley-conserved Topological Integrated Antenna for 100-Gbps THz 6G Wireless [J ] . Science Advances , 2023 , 9 ( 44 ): eadi8500 .
Foxton W S . Silicon Photonics Reaches Prime Time [DB/OL ] . ( 2019-04-26 ) [ 2024-03-05 ] . https://www.eetimes.eu/silicon-photonics-reaches-prime-time/ https://www.eetimes.eu/silicon-photonics-reaches-prime-time/ .
Atabaki A H , Moazeni S , Pavanello F , et al . Integrating Photonics with Silicon Nanoelectronics for the Next Generation of Systems on a Chip [J ] . Nature , 2018 , 556 ( 7701 ): 349 - 354 .
Wade M , Anderson E , Ardalan S , et al . TeraPHY: a Chiplet Technology for Low-Power, High-bandwidth In-package Optical I/O [J ] . IEEE Micro , 2020 , 40 ( 2 ): 63 - 71 .
Broadcom . TH5 51.2T Bailly CPO (Co-Packaged Optics) [DB/OL ] . ( 2023-03-01 ) [ 2024-03-05 ] . https://docs.broadcom.com/doc/th5-51.2t-bailly-cpo https://docs.broadcom.com/doc/th5-51.2t-bailly-cpo .
Reed G T , Mashanovich G Z , Gardes F Y , et al . Recent Breakthroughs in Carrier Depletion based Silicon Optical Modulators [J ] . Nanophotonics , 2014 , 3 ( 4-5 ): 229 - 245 .
DARPA HIVE . The DARPA HIVE Program: Providing Fuel for the Rocket [DB/OL ] . ( 2017-03-28 ) [ 2024-03-05 ] . http://graphchallenge.mit.edu/darpa-hive http://graphchallenge.mit.edu/darpa-hive .
张新全 , 肖希 , 余少华 . 信息光电子“微电子化”技术进展和发展探讨 [J ] . 光通信研究 , 2023 ( 6 ): 1 - 10 .
Zhang X Q , Xiao X , Yu S H . Technological Progress of Information Optoelectronics Microelectronization and Discussion on Its Development [J ] . Study on Optical Communications , 2023 ( 6 ): 1 - 10 .
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构