浏览全部资源
扫码关注微信
1.广西大学物理科学与技术学院 相对论天体物理实验室,南宁 530004
2.国家信息光电子创新中心,武汉 430074
张鹤千(1999-),女,山西河津人。博士,主要研究方向为集成芯片化量子保密通信技术。
肖希,教授级高工。E-mail:xiaoxi@noeic.com
韦克金,教授。E-mail:kjwei@gxu.edu.cn
收稿日期:2025-04-20,
修回日期:2025-05-07,
纸质出版日期:2025-06-10
移动端阅览
张鹤千,华昕,王子骥,等. 基于硅基光子学的量子密钥分发研究进展[J]. 光通信研究,2025(3): 250150.
Zhang H Q, Hua X, Wang Z J, et al. Recent Advances in Silicon Photonics for Quantum Key Distribution[J]. Study on Optical Communications, 2025(3): 250150.
张鹤千,华昕,王子骥,等. 基于硅基光子学的量子密钥分发研究进展[J]. 光通信研究,2025(3): 250150. DOI: 10.13756/j.gtxyj.2025.250150.
Zhang H Q, Hua X, Wang Z J, et al. Recent Advances in Silicon Photonics for Quantum Key Distribution[J]. Study on Optical Communications, 2025(3): 250150. DOI: 10.13756/j.gtxyj.2025.250150.
量子密钥分发(QKD)作为基于量子力学原理的安全通信技术,其系统集成化是实现实用化的关键。集成光量子技术凭借其稳定、紧凑的器件制造优势以及高效操控光量子态的生成、传输与探测的能力,为QKD系统的大规模部署和商用化推广提供了突破性解决方案。当前多种集成平台各具特色,其中硅基光子学凭借其互补金属氧化物半导体(CMOS)工艺兼容性、高集成度等显著优势,已成为推动QKD系统芯片化发展的主要方向之一。文章重点关注硅基光子学平台,梳理了QKD系统演示方案的最新研究进展。
As a secure communication technology grounded in the principles of quantum mechanics
Quantum Key Distribution (QKD) holds great promise for future information security. However
the practical deployment of QKD hinges critically on system integration. Integrated optical quantum technologies offer a compact
stable
and scalable solution by enabling precise control over the generation
transmission
and detection of quantum states of light. Among the diverse photonic integration platforms
silicon photonics is particularly notable for its compatibility with Complementary Metal-Oxide-Semiconductor (CMOS) processes
its high integration density
and its potential for large-scale production. These features make silicon photonics a leading candidate for advancing QKD systems toward chip-scale realization. This review focuses on recent progress in QKD system demonstrations based on silicon photonics
highlighting the key technological milestones and integration strategies that are driving the transition from laboratory prototypes to real-world applications.
Chen Y A , Zhang Q , Chen T Y , et al . An Integrated Space-to-ground Quantum Communication Network over 4, 600 Kilometres [J ] . Nature , 2021 , 589 ( 7841 ): 214 - 219 .
Liao S K , Cai W Q , Handsteiner J , et al . Satellite-Relayed Intercontinental Quantum Network [J ] . Physical Review Letters , 2018 , 120 ( 3 ): 030501 .
Yu H , Govorov A O , Song H Z , et al . Time-encoded Photonic Quantum States: Generation, Processing, and Applications [J ] . Applied Physics Reviews , 2024 , 11 ( 4 ): 041318 .
Wen W , Chen Z , Lu L , et al . Realizing an Entanglement-based Multiuser Quantum Network with Integrated Photonics [J ] . Physical Review Applied , 2022 , 18 ( 2 ): 024059 .
Zhu P , Zheng Q , Wang K , et al . Solving Perfect Matchings by Frequency-grouped Multi-photon Events Using a Silicon Chip [J ] . Nature Communications , 2025 , 16 ( 1 ): 3670 .
Jiang Z , Wang H , Xie P , et al . On-chip Topological Transport of Integrated Optical Frequency Combs [J ] . Photonics Research , 2024 , 13 ( 1 ): 163 - 176 .
Wang J , Paesani S , Ding Y , et al . Multidimensional Quantum Entanglement with Large-scale Integrated Optics [J ] . Science , 2018 , 360 ( 6386 ): 285 - 291 .
Schaeff C , Polster R , Huber M , et al . Experimental Access to Higher-dimensional Entangled Quantum Systems Using Integrated Optics [J ] . Optica , 2015 , 2 ( 6 ): 523 - 529 .
Dada A C , Leach J , Buller G S , et al . Experimental High-dimensional Two-photon Entanglement and Violations of Generalized Bell Inequalities [J ] . Nature Physics , 2011 , 7 ( 9 ): 677 - 680 .
Wan P , Zhu W Z , Lou Y C , et al . Postselection-Free Cavity-Enhanced Narrow-band Orbital Angular Momentum Entangled Photon Source [J ] . Physical Review Letters , 2025 , 134 ( 5 ): 053801 .
Reimer C , Sciara S , Roztocki P , et al . High-dimensional One-way Quantum Processing Implemented on D-level Cluster States [J ] . Nature Physics , 2019 , 15 ( 2 ): 148 - 153 .
Yi X , Zhao W , Zhang L , et al . Efficient Mode Coupling/(de) Multiplexing Between a Few-mode Fiber and a Silicon Photonic Chip [J ] . Photonics Research , 2024 , 12 ( 12 ): 2784 - 2793 .
Laing A , Peruzzo A , Politi A , et al . High-fidelity Operation of Quantum Photonic Circuits [J ] . Applied Physics Letters , 2010 , 97 ( 21 ): 211109 .
Shadbolt P J , Verde M R , Peruzzo A , et al . Generating, Manipulating and Measuring Entanglement and Mixture with a Reconfigurable Photonic Circuit [J ] . Nature Photonics , 2021 , 6 ( 1 ): 45 - 49 .
Wang H , Sun L , He Y , et al . Asymmetric topological Valley Edge States on Silicon-on-insulator Platform [J ] . Laser & Photonics Reviews , 2022 , 16 ( 6 ): 2100631 .
Xu H , Yang Y , Tan J , et al . High-performance Lateral Avalanche Photodiode based on Silicon-on-insulator Structure [J ] . IEEE Electron Device Letters , 2022 , 43 ( 7 ): 1077 - 1080 .
Goto M , Honda Y , Nanba M , et al . 3-layer Stacking Technology with Pixel-wise Interconnections for Image Sensors Using Hybrid Bonding of Silicon-on-insulator Wafers Mediated by Thin Si Layers [C ] // 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC) . San Diego, CA, USA : IEEE , 2022 : 9816403 .
Zheng S , Zhou J , Liu N , et al . Low Thermal Budget Reconfigurable Fully Depleted Silicon on Insulator Field-effect-transistors with Embedded Boolean Logic [J ] . IEEE Electron Device Letters , 2022 , 44 ( 2 ): 321 - 324 .
Tuorila H , Viheriälä J , Cherci M , et al . Low-loss operation of Silicon-on-insulator Integrated Components at 2.6-2.7 μm [J ] . Optics Express , 2023 , 31 ( 23 ): 39039 - 39048 .
Jahanbozorgi M , Yang Z , Sun S , et al . Generation of Squeezed Quantum Microcombs with Silicon Nitride Integrated Photonic Circuits [J ] . Optica , 2023 , 10 ( 8 ): 1100 - 1101 .
Xiang C , Jin W , Bowers J E . Silicon Nitride Passive and Active Photonic Integrated Circuits: Trends and Prospects [J ] . Photonics Research , 2022 , 10 ( 6 ): A82 - A96 .
Parto K , Azzam S I , Lewis N , et al . Cavity-enhanced 2D Material Quantum Emitters Deterministically Integrated with Silicon Nitride Microresonators [J ] . Nano Letters , 2022 , 22 ( 23 ): 9748 - 9756 .
Wang Y , Faurby C F D , Ruf F , et al . Deterministic Photon Source Interfaced with a Programmable Silicon-nitride Integrated Circuit [J ] . NPJ Quantum Information , 2023 , 9 ( 1 ): 94 .
Powell K , Li L , Shams-Ansari A , et al . Integrated Silicon Carbide Electro-optic Modulator [J ] . Nature Communications , 2022 , 13 ( 1 ): 1851 .
Sibson P , Erven C , Godfrey M , et al . Chip-based Quantum Key Distribution [J ] . Nature Communications , 2017 , 8 ( 1 ): 13984 .
Hegedüs N , Balázsi C , Kolonits T , et al . Investigation of the RF Sputtering Process and the Properties of Deposited Silicon Oxynitride Layers Under Varying Reactive Gas Conditions [J ] . Materials , 2022 , 15 ( 18 ): 6313 .
Boes A , Chang L , Langrock C , et al . Lithium Niobate Photonics: Unlocking the Electromagnetic Spectrum [J ] . Science , 2023 , 379 ( 6627 ): eabj4396 .
杨鹏毅 . 一种并行多路薄膜铌酸锂电光调制器 [J ] . 光通信研究 , 2024 ( 6 ): 230092 .
Yang P Y . A Parallel Multichannel Lithium Niobate Electro Optic Modulator [J ] . Study on Optical Communications , 2024 ( 6 ): 230092 .
Wang X , Jiao X , Wang B , et al . Quantum Frequency Conversion and Single-photon Detection with Lithium Niobate Nanophotonic Chips [J ] . NPJ Quantum Information , 2023 , 9 ( 1 ): 38 .
Wang X D , Zhu Y F , Jin T T , et al . Waveguide-coupled Deterministic Quantum Light Sources and Post-growth Engineering Methods for Integrated Quantum Photonics [J ] . Chip , 2022 , 1 ( 3 ): 100018 .
Horn R , Abolghasem P , Bijlani B J , et al . Monolithic Source of Photon Pairs [J ] . Physical Review Letters , 2012 , 108 ( 15 ): 153605 .
Wang J , Santamato A , Jiang P , et al . Gallium Arsenide (GaAs) Quantum Photonic Waveguide Circuits [J ] . Optics Communications , 2014 , 327 : 49 - 55 .
Hillier J A , Meighan A , Hu Q , et al . 320 Gbps Co-planar Stripline Mach-Zehnder Modulator on a Generic Indium Phosphide Integrated Photonics Platform [J ] . Optics Express , 2025 , 33 ( 7 ): 15081 - 15094 .
Kabir T , Wang Y , Tondini S , et al . Compact Widely Tunable Laser Integrated on an Indium Phosphide Membrane Platform [J ] . Applied Physics Letters , 2024 , 125 ( 12 ): 121110 .
Katsumi R , Takada K , Jelezko F , et al . Recent Progress In Hybrid Diamond Photonics for Quantum Information Processing and Sensing [J ] . Communications Engineering , 2025 , 4 ( 1 ): 1 - 19 .
Xu X Y , Wang X W , Chen D Y , et al . Quantum Transport in Fractal Networks [J ] . Nature Photonics , 2021 , 15 ( 9 ): 703 - 710 .
Neef V , Pinske J , Klauck F , et al . Three-dimensional non-abelian Quantum Holonomy [J ] . Nature Physics , 2023 , 19 ( 1 ): 30 - 34 .
吴冕 , 武霖 , 陶金 . 双光子3D打印超表面光器件研究进展 [J ] . 光通信研究 , 2023 ( 6 ): 11 - 31 .
Wu M , Wu L , Tao J . Recent Progress and Comment on Metasurface Devices based on Two-photon 3D Printing [J ] . Study on Optical Communications , 2023 ( 6 ): 11 - 31 .
Zhang B , Yan W , Chen F . Recent Advances in Femtosecond Laser Direct Writing of Three-dimensional Periodic Photonic Structures in Transparent Materials [J ] . Advanced Photonics , 2025 , 7 ( 3 ): 034002 .
Han Y , Park H , Bowers J , et al . Recent Advances in Light Sources on Silicon [J ] . Advances in Optics and Photonics , 2022 , 14 ( 3 ): 404 - 454 .
Zhou W H , Wang X W , Ren R J , et al . Multi-particle Quantum Walks on 3D Integrated Photonic Chip [J ] . Light: Science & Applications , 2024 , 13 ( 1 ): 296 .
Zeuner J , Pitsios I , Tan S H , et al . Experimental Quantum Homomorphic Encryption [J ] . NPJ Quantum Information , 2021 , 7 : 25 .
Ji X , Okawachi Y , Gil-Molina A , et al . Ultra-low-loss Silicon Nitride Photonics based on Deposited Films Compatible with Foundries [J ] . Laser & Photonics Reviews , 2023 , 17 ( 3 ): 2200544 .
Finco G , Miserocchi F , Maeder A , et al . Time-bin Entangled Bell State Generation and Tomography on Thin-film Lithium Niobate [J ] . NPJ Quantum Information , 2024 , 10 ( 1 ): 135 .
Xu B Y , Chen L K , Lin J T , et al . Spectrally Multiplexed and Bright Entangled Photon Pairs in a Lithium Niobate Microresonator [J ] . Science China Physics, Mechanics & Astronomy , 2022 , 65 ( 9 ): 294262 .
Solntsev A S , Kumar P , Pertsch T , et al . LiNbO 3 Waveguides for Integrated SPDC Spectroscopy [J ] . Apl Photonics , 2018 , 3 ( 2 ): 021301 .
Snigirev V , Riedhauser A , Lihachev G , et al . Ultrafast Tunable Lasers Using Lithium Niobate Integrated Photonics [J ] . Nature , 2023 , 615 ( 7952 ): 411 - 417 .
Eid M M A , Rashed A N Z , Amiri I S . Fast Speed Switching Response and High Modulation Signal Processing Bandwidth Through LiNbO 3 Electro-optic Modulators [J ] . Journal of Optical Communications , 2024 , 45 ( s1 ): s157 - s162 .
Eid M M A , Rashed A N Z , Sorathiya V , et al . GaAs Electro-optic Absorption Modulators Performance Evaluation, Under High-temperature Variations [J ] . Journal of Optical Communications , 2025 , 45 ( s1 ): s359 - s368 .
Ozaki J , Ogiso Y , Hashizume Y , et al . Over-85-GHz-bandwidth InP-based Coherent Driver Modulator Capable of 1-Tb/s/λ-class Operation [J ] . Journal of Lightwave Technology , 2023 , 41 ( 11 ): 3290 - 3296 .
Bennett C H , Brassard G . Quantum Cryptography: Public Key Distribution and Coin Tossing [J ] . Theoretical Computer Science , 2014 , 560 ( 1 ): 7 - 11 .
Inoue K , Waks E , Yamamoto Y . Differential-phase-shift Quantum Key Distribution Using Coherent Light [J ] . Physical Review A , 2003 , 68 ( 2 ): 022317 .
Stucki D , Brunner N , Gisin N , et al . Fast and Simple One-way Quantum Key Distribution [J ] . Applied Physics Letters , 2005 , 87 ( 19 ): 194108 .
Lo H K , Curty M , Qi B . Measurement-device-independent Quantum Key Distribution [J ] . Physical Review Letters , 2012 , 108 ( 13 ): 130503 .
Brassard G , Lutkenhaus N , Mor T , et al . Limitations on Practical Quantumcryptography [J ] . Physical Review Letters , 2000 , 85 ( 6 ): 1330 - 1333 .
Lütkenhaus N . Security Against Individual Attacks for Realistic Quantum Keydistribution [J ] . Physical Review A , 2000 , 61 ( 5 ): 052304 .
Ma C , Sacher W D , Tang Z , et al . Silicon Photonic Transmitter for Polarization-encoded Quantum Key Distribution [J ] . Optica , 2016 , 3 ( 11 ): 1274 .
Sibson P , Kennard J E , Stanisic S , et al . Integrated Silicon Photonics for High-speed Quantum Key Distribution [C ] // 2017 Conference on Lasers and Electro-Optics (CLEO) . San Jose, CA, USA : IEEE , 2017 : 8083555 .
Li W , Zhang L , Tan H , et al . High-rate Quantum Key Distribution Exceeding 110 Mbit/s [J ] . Nature Photonics , 2023 , 17 ( 5 ): 416 - 421 .
Sax R , Boaron A , Boso G , et al . High-speed Integrated QKD System [J ] . Photonics Research , 2023 , 11 ( 6 ): 1007 .
Du Y , Zhu X , Hua X , et al . Silicon-based Decoder for Polarization-encoding Quantum Key Distribution [J ] . Chip , 2023 , 2 ( 1 ): 100039 .
Wei K , Hu X , Du Y , et al . Resource-efficient Quantum Key Distribution with Integrated Silicon Photonics [J ] . Photonics Research , 2023 , 11 ( 8 ): 1364 - 1372 .
Geng W , Zhang C , Zheng Y , et al . Stable Quantum Key Distribution Using a Silicon Photonic Transceiver [J ] . Optics Express , 2019 , 27 ( 20 ): 29045 - 29054 .
Paraïso T K , De Marco I , Roger T , et al . A Modulator-free Quantum Key Distribution Transmitter Chip [J ] . NPJ Quantum Information , 2019 , 5 ( 1 ): 42 .
Kong L , Li Z , Li C , et al . Photonic Integrated Quantum Key Distribution Receiver for Multiple Users [J ] . Optics Express , 2020 , 28 ( 12 ): 18449 - 18455 .
Avesani M , Calderaro L , Schiavon M , et al . Full Daylight Quantum-key-distribution at 1 550 nm Enabled by Integrated Silicon Photonics [J ] . NPJ Quantum Information , 2021 , 7 ( 1 ): 93 .
Zhang G , Zhao Z , Dai J , et al . Polarization-based Quantum Key Distribution Encoder and Decoder on Silicon Photonics [J ] . Journal of Lightwave Technology , 2022 , 40 ( 7 ): 2052 - 2059 .
Zhang G W , Chen W , Fan-Yuan G J , et al . Polarization-insensitive Quantum Key Distribution Using Planar Lightwave Circuit Chips [J ] . Science China Information Sciences , 2022 , 65 ( 10 ): 200506 .
Zhu C X , Chen Z Y , Li Y , et al . Experimental Quantum Key Distribution with Integrated Silicon Photonics and Electronics [J ] . Physical Review Applied , 2022 , 17 ( 6 ): 064034 .
Wei K , Li W , Tan H , et al . High-speed Measurement-device-independent Quantum Key Distribution with Integrated Silicon Photonics [J ] . Physical Review X , 2020 , 10 ( 3 ): 031030 .
Li W , Zapatero V , Tan H , et al . Experimental Quantum Key Distribution Secure Against Malicious Devices [J ] . Physical Review Applied , 2021 , 15 ( 3 ): 034081 .
Cao L , Luo W , Wang Y X , et al . Chip-based Measurement-device-independent Quantum Key Distribution Using Integrated Silicon Photonic Systems [J ] . Physical Review Applied , 2020 , 14 ( 1 ): 011001 .
Zheng X , Zhang P , Ge R , et al . Heterogeneously Integrated, Superconducting Silicon-photonic Platform for Measurement-device-independent Quantum Key Distribution [J ] . Advanced Photonics , 2021 , 3 ( 5 ): 055002 .
Honjo T , Inoue K , Takahashi H . Differential-phase-shift Quantum Key Distribution Experiment with a Planar Light-wave Circuit Mach – Zehnder Interferometer [J ] . Optics Letters , 2004 , 29 ( 23 ): 2797 - 2799 .
Honjo T , Yamamoto S , Yamamoto T , et al . Field Trial of Differential-phase-shift Quantum Key Distribution Using Polarization Independent Frequency Up-conversion Detectors [J ] . Optics Express , 2007 , 15 ( 24 ): 15920 - 15927 .
Ding Y , Bacco D , Dalgaard K , et al . High-dimensional Quantum Key Distribution based on Multicore Fiber Using Silicon Photonic Integrated Circuits [J ] . NPJ Quantum Information , 2017 , 3 ( 1 ): 25 .
Zhang G , Haw J Y , Cai H , et al . An Integrated Silicon Photonic Chip Platform for Continuous-variable Quantum Key Distribution [J ] . Nature Photonics , 2019 , 13 ( 12 ): 839 - 842 .
Piétri Y , Vidarte L T , Schiavon M , et al . CV-QKD Receiver Platform based on a Silicon Photonic Integrated Circuit [C ] // 2023 Optical Fiber Communications Conference and Exhibition (OFC) . San Diego, CA, USA : IEEE , 2023 : M1I.2 .
Bian Y , Pan Y , Xu X , et al . Continuous-variable Quantum Key Distribution over 28.6 km Fiber with an Integrated Silicon Photonic Receiver Chip [J ] . Applied Physics Letters , 2024 , 124 ( 17 ): 174001 .
Lo H K , Curty M , Tamaki K . Secure Quantum Key Distribution [J ] . Nature Photonics , 2014 , 8 ( 8 ): 595 - 604 .
Pirandola S , Laurenza R , Ottaviani C , et al . Fundamental Limits of Repeaterless Quantum Communications [J ] . Nature communications , 2017 , 8 ( 1 ): 15043 .
Ma X , Zeng P , Zhou H . Phase-matching Quantum Key Distribution [J ] . Physical Review X , 2018 , 8 ( 3 ): 031043 .
Wang X B , Yu Z W , Hu X L . Twin-field Quantum Key Distribution with Large Misalignment Error [J ] . Physical Review A , 2018 , 98 ( 6 ): 062323 .
Wang S , He D Y , Yin Z Q , et al . Beating the Fundamental Rate-distance Limit in a Proof-of-principle Quantum Key Distribution System [J ] . Physical Review X , 2019 , 9 ( 2 ): 021046 .
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构